Applications of laser desorption and electrospray ionization mass spectrometry at the transition between clusters and colloids.

نویسندگان

  • P J Dyson
  • B F Johnson
  • J S McIndoe
  • P R Langridge-Smith
چکیده

The development of powerful new mass spectrometric techniques such as electrospray ionization (ESI)1 and matrix-assisted laser desorption ionization (MALDI)2 has been driven by the polymer and biological sciences. Workers in other areas, for whom conventional techniques are less useful, such as cluster chemistry, are now embracing these ionization methods. The mass spectrometric characterization of high-nuclearity metal carbonyl clusters using more traditional techniques is not trivial because of the high mass of clusters, their relative involatility, and their thermal sensitivity. Recently, ESI has been applied to cluster molecules.3 This technique provides a straightforward and superior determination of molecular weights for these compounds, in contrast to laser desorption ionization (LDI), which tends to give much more complicated spectra.4 In this communication we compare LDI and ESI mass spectrometry for measuring the molecular weights of large anionic osmium clusters. It has previously been shown that the laser desorption/ionization of neutral metal carbonyl clusters can lead to the generation of high molecular weight clusters and supraclusters.4 Similar phenomena have been observed using 252Cf plasma desorption5 and electron impact Fourier transform ion cyclotron resonance mass spectrometry.6 Nevertheless, we have found that LDI mass spectrometry may be used for molecular weight determination of anionic clusters. Here, little or no supraclustering is observed and the spectra consist mainly of peaks attributable to the parent ion and to fragment ions derived from the sequential loss of carbonyl ligands. Information unavailable routinely by other techniques, i.e., the molecular weight of a cluster directly from the solid phase and, in certain cases, a count of the carbonyl groups present (vide infra), is provided. To illustrate the use of this technique, the negative-ion LDI-TOF mass spectrum of [PPN]2[Os10C(CO)24] (PPN ) Ph3PNPPh3) at moderate laser power is shown in Figure 1.8 The highest mass peak at m/z 2588 corresponds to [Os10C(CO)24], and the peaks at lower mass correspond to the ions [Os10C(CO)n] (n ) 5-23). Higher laser power caused further CO stripping to give eventually the naked metal core, [Os10C], whereas lower laser power brought about an increase in the abundance of the molecular ion. CO loss fragments are always observed, even at threshold laser power. No doubly charged ions were observed for this sample or in any of the other samples studied. Electron loss from the cluster is an entirely expected reaction in the ion plume during ablation by the laser, and in our previous LDI studies of clusters4 we have only observed singly charged ions. The ESI mass spectrum of [Os10C(CO)24] at a low cone voltage shows a single envelope of peaks due to the intact, doubly † The University of York. ‡ The University of Cambridge. § The University of Edinburgh. (1) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Mass Spectrom. ReV. 1990, 9, 37. (2) (a) Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193. (b) Muddiman, D. C.; Bakhtiar, R.; Hofstadler, S. A.; Smith, R. D. J. Chem. Educ. 1997, 74, 1288. (3) (a) Johnson, B. F. G.; McIndoe, J. S. Coord. Chem. ReV., in press. (b) Choi, Y.-Y.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1999, 331. (c) Henderson, W.; McCaffery, L. J.; Nicholson, B. K. Polyhedron 1998, 17, 4291. (d) Bryce, D. J. F.; Dyson, P. J.; Nicholson, B. K.; Parker, D. G. Polyhedron 1998, 17, 2899. (e) Henderson, W.; McIndoe, J. S.; Nicholson, B. K.; Dyson, P. J. J. Chem. Soc., Dalton Trans. 1998, 519. (f) Henderson, W.; McIndoe, J. S.; Nicholson, B. K.; Dyson, P. J. Chem. Commun. 1996, 1183. (g) Ferrer, M.; Reina, R.; Rossell, O.; Seco, M.; Segales, G. J. Organomet. Chem. 1996, 515, 205. (h) Henderson, W.; Nicholson, B. K. Chem. Commun. 1995, 2531. (i) Colton, R.; D’Agostino, A.; Traeger, J. C. Mass Spectrom. ReV. 1995, 14, 79. (4) (a) Dollard, W. J.; Dyson, P. J.; Jackson, A. T.; Johnson, B. F. G.; McIndoe, J. S.; Langridge-Smith, P. R. R. Inorg. Chem. Commun. 1999, 2, 587. (b) Dyson, P. J.; McGrady, J. E.; Johnson, B. F. G.; Hearley, A. K.; McIndoe, J. S.; Langridge-Smith, P. R. R. Inorg. Chem. Commun. 1999, 2, 590. (c) Critchley, G.; Dyson, P. J.; Johnson, B. F. G.; McIndoe, J. S.; O’Reilly, R. K.; Langridge-Smith, P. R. R. Organometallics 1999, 18, 4090. (d) Carter Dopke, N.; Treichel, P. M.; Vestling, M. M. Inorg. Chem. 1998, 37, 1272. (e) Dale, M. J.; Dyson, P. J.; Suman, P.; Zenobi, R. Organometallics 1997, 16, 197. (f) Dale, M. J.; Dyson, P. J.; Johnson, B. F. G.; Langridge-Smith, P. R. R.; Yates, H. T. J. Chem. Soc., Dalton Trans. 1996, 771. (g) Dale, M. J.; Dyson, P. J.; Johnson, B. F. G.; Martin, C. M.; Langridge-Smith, P. R. R.; Zenobi, R. J. Chem. Soc., Chem. Commun. 1995, 1689. (5) (a) McNeal, C. J.; Winpenny, R. E. P.; Hughes, J. M.; Macfarlane, R. D.; Pignolet, L. H.; Nelson, L. T. J.; Gardner, T. G.; Irgens, L. H.; Vigh, G.; Fackler, J. P., Jr. Inorg. Chem. 1993, 32, 5582. (b) McNeal, C. J.; Hughes, J. M.; Lewis, G. J.; Dahl, L. F. J. Am. Chem. Soc. 1991, 113, 372. (c) Fackler, J. P., Jr.; McNeal, C. J.; Winpenny, R. E. P. J. Am. Chem. Soc. 1989, 111, 6434. (6) (a) Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Schmid, G. J. Am. Chem. Soc. 1990, 112, 8166. (b) Mullen, S. L.; Marshall, A. G. J. Am. Chem. Soc. 1988, 110, 1766. (c) Meckstroth, W. K.; Freas, R. B.; Reents, W. D., Jr.; Ridge, D. P. Inorg. Chem. 1985, 24, 3139. (d) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998. (e) Weddle, G. H.; Alison, J.; Ridge, D. P. J. Am. Chem. Soc. 1977, 99, 105. (f) Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1975, 93, 4808. (7) Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Nelson, W. J. H.; McPartlin, M. J. Chem. Soc., Dalton Trans. 1982, 2099. (8) Low-resolution LDI-TOF mass spectra were obtained using a Kratos Kompact MALDI-4 instrument in linear mode. High-resolution data were recorded on [PPN]2[Os10C(CO)24] using a TOFSpec2E instrument in reflectron mode. Dilute dichloromethane solutions of the clusters were evaporated directly onto the sample slide (no matrix was used). The laser power was typically modulated to maximize the signal-to-noise ratio. In all cases the machines were run in negative-ion mode. Figure 1. Negative-ion LDI-TOF mass spectrum from [PPN]2[Os10C(CO)24]. 2430 Inorg. Chem. 2000, 39, 2430-2431

منابع مشابه

Analysis of the Photo Conversion of Asphaltenes Using Laser Desorption Ionization Mass Spectrometry: Fragmentation, Ring Fusion, and Fullerene Formation

The conversion or photo conversion of asphaltenes to polycyclic aromatic hydrocarbons (PAH’s) promoted by a laser source is analyzed using both experimental and theoretical methods. We propose that during measurements performed at an intermediate laser power, fragmentation to afford PAH’s and ring fusion to yield fused PAH’s (FPAH’s) may occur either within molecular clusters (resin case) or wi...

متن کامل

Quantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)

The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...

متن کامل

Design, Construction and Calibration of a Laser Ionization Time-of-Flight Mass Spectrometer

A time-of-flight mass spectrometer (TOF-MS) developed in our laboratory at Isfahan University of Technology is described here. The TOF-MS instrument uses laser as the ionization source which provides an opportunity to investigate the ions formed in laser ablation or desorption. The TOF-MS has an ionization chamber containing an accelerator and an ion lens to focus the ions into a one meter line...

متن کامل

Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization.

Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization....

متن کامل

Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry.

Desorption electrospray ionization (DESI) mass spectrometry is used for the selective and sensitive detection of trace amounts of explosives and chemical warfare agent simulants from ambient surfaces at distances of up to 3 meters from the mass spectrometer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Inorganic chemistry

دوره 39 12  شماره 

صفحات  -

تاریخ انتشار 2000